Absolute dating methods include all but which of the following

Contents:


  1. Dating Methods
  2. Dating Techniques
  3. How Does Carbon Dating Work
  4. What is Carbon (14C) Dating? Carbon Dating Definition

The half-life of U is 4. When the mineral or glass is heated, the tracks are erased in much the same way cut marks fade away from hard candy that is heated. This process sets the fission track clock to zero, and the number of tracks that then form are a measure of the amount of time that has passed since the heating event. Scientists are able to count the tracks in the sample with the aid of a powerful microscope. The sample must contain enough U to create enough tracks to be counted, but not contain too much of the isotope, or there will be a jumble of tracks that cannot be distinguished for counting.

One of the advantages of fission track dating is that it has an enormous dating range. Objects heated only a few decades ago may be dated if they contain relatively high levels of U; conversely, some meteorites have been dated to over a billion years old with this method. Although certain dating techniques are accurate only within certain age ranges, whenever possible, scientists attempt to use multiple methods to date specimens. Correlation of dates via different dating methods provides a highest degree of confidence in dating. See also Evolution, evidence of; Fossil record; Fossils and fossilization; Geologic time; Historical geology.

Cite this article Pick a style below, and copy the text for your bibliography. Retrieved January 17, from Encyclopedia. Then, copy and paste the text into your bibliography or works cited list. Because each style has its own formatting nuances that evolve over time and not all information is available for every reference entry or article, Encyclopedia. Movies and television have presented a romantic vision of archaeology as adventure in far-away and exotic locations. A more realistic picture might show researchers digging in smelly mud for hours under the hot sun while battling relentless mosquitoes.

This type of archaeological research produces hundreds of small plastic bags containing pottery shards, animal bones, bits of worked stone, and other fragments. These findings must be classified, which requires more hours of tedious work in a stuffy tent. At its best, archaeology involves a studious examination of the past with the goal of learning important information about the culture and customs of ancient or not so ancient peoples.

Much archaeology in the early twenty-first century investigates the recent past, a sub-branch called "historical archaeology. Archaeology is the study of the material remains of past human cultures. It is distinguished from other forms of inquiry by its method of study, excavation. Most archaeologists call this "digging. That sort of unscientific digging destroys the archaeological information. Archaeological excavation requires the removal of material layer by layer to expose artifacts in place. The removed material is carefully sifted to find small artifacts , tiny animal bones, and other remains.

Archaeologists even examine the soil in various layers for microscopic material, such as pollen. Excavations, in combination with surveys, may yield maps of a ruin or collections of artifacts. Time is important to archaeologists. There is rarely enough time to complete the work, but of even greater interest is the time that has passed since the artifact was created.

An important part of archaeology is the examination of how cultures change over time. It is therefore essential that the archaeologist is able to establish the age of the artifacts or other material remains and arrange them in a chronological sequence. The archaeologist must be able to distinguish between objects that were made at the same time and objects that were made at different times. When objects that were made at different times are excavated, the archaeologist must be able to arrange them in a sequence from the oldest to the most recent.

Before scientific dating techniques such as dendrochronology and radiocarbon dating were introduced to archaeology, the discipline was dominated by extensive discussions of the chronological sequence of events. Most of those questions have now been settled and archaeologists have moved on to other issues. Scientific dating techniques have had a huge impact on archaeology. Archaeologists use many different techniques to determine the age of an object. Usually, several different techniques are applied to the same object.

Relative dating arranges artifacts in a chronological sequence from oldest to most recent without reference to the actual date. For example, by studying the decorations used on pottery, the types of materials used in the pottery, and the types and shapes of pots, it is often possible to arrange them into a sequence without knowing the actual date.

In absolute dating , the age of an object is determined by some chemical or physical process without reference to a chronology. The most common and widely used relative dating technique is stratigraphy. The principle of superposition borrowed from geology states that higher layers must be deposited on top of lower layers. Thus, higher layers are more recent than lower layers. This only applies to undisturbed deposits. Rodent burrows, root action, and human activity can mix layers in a process known as bioturbation.

However, the archaeologist can detect bioturbation and allow for its effects.

Dating Methods

Discrete layers of occupation can often be determined. For example, Hisarlik, which is a hill in Turkey , is thought by some archaeologists to be the site of the ancient city of Troy. However, Hisarlik was occupied by many different cultures at various times both before and after the time of Troy, and each culture built on top of the ruins of the previous culture, often after violent conquest. Consequently, the layers in this famous archaeological site represent many different cultures. An early excavator of Hisarlik, Heinrich Schleimann, inadvertently dug through the Troy layer into an earlier occupation and mistakenly assigned the gold artifacts he found there to Troy.

Other sites have been continuously occupied by the same culture for a long time and the different layers represent gradual changes. In both cases, stratigraphy will apply. A chronology based on stratigraphy often can be correlated to layers in other nearby sites. For example, a particular type or pattern of pottery may occur in only one layer in an excavation. If the same pottery type is found in another excavation nearby, it is safe to assume that the layers are the same age.

Archaeologists rarely make these determinations on the basis of a single example. Usually, a set of related artifacts is used to determine the age of a layer. Seriation simply means ordering. This technique was developed by the inventor of modern archaeology, Sir William Matthew Flinders Petrie. Seriation is based on the assumption that cultural characteristics change over time. For example, consider how automobiles have changed in the last 50 years a relatively short time in archaeology.

Automobile manufacturers frequently introduce new styles about every year, so archaeologists thousands of years from now will have no difficulty identifying the precise date of a layer if the layer contains automobile parts.


  • Dating Techniques | ibohyhozeq.tk.
  • dating advice for disabled.
  • spark speed dating calgary.
  • isochron dating earth;
  • What is Radiocarbon Dating?.
  • Absolute dating - Wikipedia;
  • jenn and jc dating.

Cultural characteristics tend to show a particular pattern over time. The characteristic is introduced into the culture for example, using a certain type of projectile point for hunting or wearing low-riding jeans , becomes progressively more popular, then gradually wanes in popularity. The method of seriation uses this distinctive pattern to arrange archaeological materials into a sequence. However, seriation only works when variations in a cultural characteristic are due to rapid and significant change over time. It also works best when a characteristic is widely shared among many different members of a group.

Even then, it can only be applied to a small geographic area, because there is also geographic variation in cultural characteristics. For example, 50 years ago American automobiles changed every year while the Volkswagen Beetle hardly changed at all from year to year. Cross dating is also based on stratigraphy.

It uses the principle that different archaeological sites will show a similar collection of artifacts in layers of the same age. Sir Flinders Petrie used this method to establish the time sequence of artifacts in Egyptian cemeteries by identifying which burials contained Greek pottery vessels. These same Greek pottery styles could be associated with monuments in Greece whose construction dates were fairly well known.

Since absolute dating techniques have become common, the use of cross dating has decreased significantly. Pollen grains also appear in archaeological layers. They are abundant and they survive very well in archaeological contexts. As climates change over time, the plants that grow in a region change as well. People who examine pollen grains the study of which is known as pollen analysis can usually determine the genus , and often the exact species producing a certain pollen type.

Archaeologists can then use this information to determine the relative ages of some sites and layers within sites. However, climates do not change rapidly, so this type of analysis is best for archaeological sites dating back to the last ice age. Absolute dating methods produce an actual date, usually accurate to within a few years. This date is established independent of stratigraphy and chronology. If a date for a certain layer in an excavation can be established using an absolute dating method, other artifacts in the same layer can safely be assigned the same age.

Dendrochronology, also known as tree-ring dating, is the earliest form of absolute dating. This method was first developed by the American astronomer Andrew Ellicott Douglas at the University of Arizona in the early s. Douglas was trying to develop a correlation between climate variations and sunspot activity , but archaeologists quickly recognized its usefulness as a dating tool. The technique was first applied in the American Southwest and later extended to other parts of the world. Tree-ring dating is relatively simple. Trees add a new layer of cambium the layer right under the bark every year.

The thickness of the layer depends on local weather and climate. In years with plenty of rain, the layer will be thick and healthy. Over the lifetime of the tree, these rings accumulate, and the rings form a record of regional variation in climate that may extend back hundreds of years. Since all of the trees in a region experience the same climate variations, they will have similar growth patterns and similar tree ring patterns.

One tree usually does not cover a period sufficiently long to be archaeologically useful. However, patterns of tree ring growth have been built up by "overlapping" ring sequences from different trees so that the tree ring record extends back several thousand years in many parts of the world. The process starts with examination of the growth ring patterns of samples from living trees.

Then older trees are added to the sequence by overlapping the inner rings of a younger sample with the outer rings of an older sample. Older trees are recovered from old buildings, archaeological sites, peat bogs, and swamps. Eventually, a regional master chronology is constructed. When dendrochronology can be used, it provides the most accurate dates of any technique. In the American Southwest, the accuracy and precision of dendrochronology has enabled the development of one of the most. Often events can be dated to within a decade.

This precision has allowed archaeologists working in the American Southwest to reconstruct patterns of village growth and subsequent abandonment with a fineness of detail unmatched in most of the world. Radiometric dating methods are more recent than dendrochronology. However, dendrochronology provides an important calibration technique for radiocarbon dating techniques. All radiometric-dating techniques are based on the well-established principle from physics that large samples of radioactive isotopes decay at precisely known rates. The rate of decay of a radioactive isotope is usually given by its half-life.

The decay of any individual nucleus is completely random. The half-life is a measure of the probability that a given atom will decay in a certain time. The shorter the half-life, the more likely the atom will decay. This probability does not increase with time. If an atom has not decayed, the probability that it will decay in the future remains exactly the same. This means that no matter how many atoms are in a sample, approximately one-half will decay in one half-life. The remaining atoms have exactly the same decay probability, so in another half-life, one half of the remaining atoms will decay.

The amount of time required for one-half of a radioactive sample to decay can be precisely determined. The particular radioisotope used to determine the age of an object depends on the type of object and its age. Radiocarbon is the most common and best known of radiometric dating techniques, but it is also possibly the most misunderstood.

It was developed at the University of Chicago in by a group of American scientists led by Willard F. Radiocarbon dating has had an enormous impact on archaeology. In the last 50 years, radiocarbon dating has provided the basis for a worldwide cultural chronology. Recognizing the importance of this technique, the Nobel Prize committee awarded the Prize in Chemistry to Libby in The physics behind radiocarbon dating is straightforward.

Earth 's atmosphere is constantly bombarded with cosmic rays from outer space. Cosmic-ray neutrons collide with atoms of nitrogen in the upper atmosphere, converting them to atoms of radioactive carbon The carbon atom quickly combines with an oxygen molecule to form carbon dioxide. This radioactive carbon dioxide spreads throughout Earth's atmosphere, where it is taken up by plants along with normal carbon As long as the plant is alive, the relative amount ratio of carbon to carbon remains constant at about one carbon atom for every one trillion carbon atoms.

Some animals eat plants and other animals eat the plant-eaters. As long as they are alive, all living organisms have the same ratio of carbon to carbon as in the atmosphere because the radioactive carbon is continually replenished, either through photosynthesis or through the food animals eat. However, when the plant or animal dies, the intake of carbon stops and the ratio of carbon to carbon immediately starts to decrease.

Dating Techniques

The half-life of carbon is 5, years. After 5, years, about one-half of the carbon atoms will have decayed. After another 5, years, one-half of the remaining atoms will have decayed. So after 11, years, only one-fourth will remain. After 17, years, one-eighth of the original carbon will remain. After 22, years, one-sixteenth will remain.

Radiocarbon dating has become the standard technique for determining the age of organic remains those remains that contain carbon. There are many factors that must be taken into account when determining the age of an object. The best objects are bits of charcoal that have been preserved in completely dry environments. The worst candidates are bits of wood that have been saturated with sea water, since sea water contains dissolved atmospheric carbon dioxide that may throw off the results.

Radiocarbon dating can be used for small bits of clothing or other fabric, bits of bone, baskets, or anything that contains organic material.

There are well over labs worldwide that do radiocarbon dating. In the early twenty-first century, the dating of objects up to about 10 half-lives, or up to about 50, years old, is possible. However, objects less than years old cannot be reliably dated because of the widespread burning of fossil fuels, which began in the nineteenth century, and the production of carbon from atmospheric testing of nuclear weapons in the s and s. Another problem with radiocarbon dating is that the production of carbon in the atmosphere has not been constant, due to variation in solar activity.

For example, in the s, solar activity dropped a phenomenon called the "Maunder Minimum" , so carbon production also decreased during this period. To achieve the highest level of accuracy, carbon dates must be calibrated by comparison to dates obtained from dendrochronology. Calibration of Radiocarbon Dates.

Samples of Bristlecone pine, a tree with a very long life span, have been dated using both dendrochronology and radiocarbon dating. The results do not agree, but the differences are consistent. That is, the radiocarbon dates were always wrong by the same number of years. Consequently, tree-ring chronologies have been used to calibrate radiocarbon dates to around 12, years ago. Heating can cause argon to leave a rock and make it look younger.

In general, if lava was heated after the initial flow, it can yield an age that is too young. If the minerals in the lava did not melt with the lava, one can obtain an age that is too old.


  1. best dating places in dallas.
  2. dating anxiety tips.
  3. Absolute dating.
  4. Leaching can also occur; this involves water circulating in rock that can cause parent and daughter elements to enter or leave the rock and change the radiometric age. Thus it is easy to rationalize any date that is obtained. If a date is too old, one can say that the mineral did not melt with the lava. Maybe it got included from surrounding rock as the lava flowed upward. If the date is too young, one can say that there was a later heating event. One can also hypothesize that leaching occurred. But then it is claimed that we can detect leaching and heating.

    But how can we know that this claim is true, without knowing the history of rocks and knowing whether they have in fact experienced later heating or leaching? The problems are compounded because many of the parent and daughter substances are mobile, to some extent. I believe that all parent substances are water soluble, and many of the daughter products as well. A few sources have said that Sr is mobile in rock to some extent. This could cause trouble for Rb-Sr dating.

    In fact, some sources say that Sr and Ar have similar mobilities in rock, and Ar is very mobile. Especially the gaseous radioactive decay byproducts such as argon, radon, and helium are mobile in rock. So if a rock has tiny cracks permitting gas to enter or escape or permitting the flow of water, the radiometric ages could be changed substantially even without the rock ever melting or mixing. Now, there is probably not much argon in a rock to start with. So the loss of a tiny amount of argon can have significant effects over long time periods.

    A loss of argon would make the rock look younger. In a similar way, argon could enter the rock from the air or from surrounding rocks and make it look older. And this can also happen by water flowing through the rock through tiny cracks, dissolving parent and daughter elements. It would be difficult to measure the tiny changes in concentration that would suffice to make large changes in the radiometric ages over long time periods.

    I also question the assertion that argon, for example, is excluded from certain minerals when they crystallize and never enters later on. Geologists often say that ages that are too old are due to excess argon. So it must be possible for that excess argon to get in, even though the crystal is supposed to exclude it. Here is one such reference, although this is to a mineral that does not exclude argon:. In a few cases, argon ages older than that of the Earth which violate local relative age patterns have even been determined for the mineral biotite.

    Such situations occur mainly where old rocks have been locally heated, which released argon into pore spaces at the same time that new minerals grew. Under favourable circumstances the isochron method may be helpful, but tests by other techniques may be required. For example, the rubidium-strontium method would give a valid isotopic age of the biotite sample with inherited argon. Another problem is that the crystal structure typically has imperfections and impurities.

    For example, different kinds of quartz have different colors due to various impurities that are included but not part of the repetitive unit of the quartz crystal. So even if the crystal excludes the daughter element, it could be present in impurities. Thus crystals, as they form, may have tiny imperfections that accept parent and daughter products in the same ratios as they occur in the lava, so one can inherit ages from the lava into minerals in this way. It is also possible that parent and daughter elements could be present in boundaries between regular crystal domains.

    I don't know how we can be sure that a crystal will exclude argon or other daughter substances except by growing it in the laboratory under many conditions. There can also be argon or other daughter products added from the air or from other rocks. One could say that we can detect whether the daughter is embedded in the crystal structure or not.

    But this would require an atom by atom analysis, which I do not believe is practical. Why K-Ar dating is inaccurate Since K-Ar potassium-argon dating is one of the most prevalent techniques, some special commentary about it is in order.

    How Does Carbon Dating Work

    Potassium is about 2. Argon is about 3. This is about one ten millionth of the mass of the rock, a very tiny percentage. And yet, with a large amount of argon in the air and also filtering up from rocks below, and with excess argon in lava, with argon and potassium water soluble, and argon mobile in rock, we are still expecting this wisp of argon to tell us how old the rock is! The percentage of Ar40 is even less for younger rocks. For example, it would be about one in million for rocks in the vicinity of 57 million years old. To get one part in 10 million of argon in a rock in a thousand years, we would only need to get one part in 10 billion entering the rock each year.

    This would be less than one part in a trillion entering the rock each day, on the average. This would suffice to give a rock having an average concentration of potassium, a computed potassium-argon age of over million years! We can also consider the average abundance of argon in the crust. This implies a radiometric age of over 4 billion years. So a rock can get a very old radiometric age just by having average amounts of potassium and argon. It seems reasonable to me that the large radiometric ages are simply a consequence of mixing, and not related to ages at all, at least not necessarily the ages of the rocks themselves.

    The fact that not all of the argon is retained would account for smaller amounts of argon near the surface, as I will explain below. This could happen because of properties of the magma chambers, or because of argon being given off by some rocks and absorbed by others. I don't see how one can possibly know that there are no tiny cracks in rocks that would permit water and gas to circulate. The rates of exchange that would mess up the dates are very tiny. It seems to me to be a certainty that water and gas will enter rocks through tiny cracks and invalidate almost all radiometric ages.

    Let me illustrate the circulation patterns of argon in the earth's crust. So argon is being produced throughout the earth's crust, and in the magma, all the time. In fact, it probably rises to the top of the magma, artificially increasing its concentration there. Now, some rocks in the crust are believed not to hold their argon, so this argon will enter the spaces between the rocks. Leaching also occurs, releasing argon from rocks.

    Heating of rocks can also release argon. Argon is released from lava as it cools, and probably filters up into the crust from the magma below, along with helium and other radioactive decay products. All of this argon is being produced and entering the air and water in between the rocks, and gradually filtering up to the atmosphere.

    But we know that rocks absorb argon, because correction factors are applied for this when using K-Ar dating. So this argon that is being produced will leave some rocks and enter others. The partial pressure of argon should be largest deepest in the earth, and decrease towards the surface.

    What is Carbon (14C) Dating? Carbon Dating Definition

    This would result in larger K-Ar ages lower down, but lower ages nearer the surface. So this confirms that argon can travel from rock to rock when one rock is heated. Now, argon is very soluble in magma, which can hold a lot of it:. After the material was quenched, the researchers measured up to 0. They noted, 'The solubility of Ar in the minerals is surprisingly high'.

    Absolute Dating Methods Radiocarbon Dating

    I note that this concentration of argon, if it were retained in the rock, would suffice to give it a geological age well over nillion years, assuming an average concentration of potassium. This is from a paper by Austin available at ICR. This paper also discusses Mount St. Helens K-Ar dating, and historic lava flows and their excess argon. So magma holds tremendous amounts of argon. Now, consider an intrusive flow, which cools within the earth.

    All its argon will either remain inside and give an old age to the flow, or will travel through surrounding rock, where it can be absorbed by other rocks. So magma should have at least 20 times as much argon as a rock million years old by K-Ar dating. In fact, the argon in the magma may well be even higher, as it may concentrate near the top.

    This amount of argon is enough to raise 20 times the volume of magma to a K-Ar age of million years, and probably times the volume of the magam to an age of 57 million years. So one sees that there is a tremendous potential for age increases in this way. It is not necessary for this increase in age to happen all at once; many events of this nature can gradually increase the K-Ar ages of rocks.

    In general, older rocks should have more argon because they have been subject to more exposure to such argon, but their true age is not necessarily related to their K-Ar radiometric age. We can also consider that most volcanoes and earthquakes occur at boundaries between plates, so if the lava has flowed before, it is likely to flow again nearby, gradually increasing the age. I suppose earthquakes could also allow the release of argon from the magma. Other mechanisms include dissolving of rock, releasing its argon, fracturing of rock, with release of argon, argon from cooling lava under water entering the water and entering other rocks, and argon from cooling lave entering subterranean water and being transported to other rock.

    There are so many mechanisms that it is hard to know what pattern to expect, and one does not need to rely on any one of them such as more argon in the magma in the past to account for problems in K-Ar dating. Since even rocks with old K-Ar dates still absorb more argon from the atmosphere in short time periods, it follows that rocks should absorb quite a bit of argon over long time periods, especially at higher pressures.

    In fact, if a rock can absorb only a ten millionth part of argon, that should be enough to raise its K-Ar age to over million years, assuming an average amounts of potassium. It wouldn't require many internal cracks to allow a ten millionth part of argon to enter. Also, as the rock deforms under pressure, more cracks are likely to form and old ones are likely to close up, providing more opportunity for argon and other gases to enter.

    I mentioned a number of possibilities that could cause K-Ar dates to be much older than the true ages of the rocks. Here is another way that K-Ar dates can be too old: If we assume the earth went through a catastrophe recently, then the crustal plates might have been agitated, permitting lava and argon to escape from the magma. Thus a lot of argon would be filtering up through the crust. As intrusive flows of lava cooled inside the crust, they would have been in an environment highly enriched in argon, and thus would not have gotten rid of much of their argon. Thus they would have hardened with a lot of argon inside.

    This would make them appear old. The same goes for extrusive flows on the surface, since argon would be filtering up through the earth and through the lava as it cooled. In areas where tremendous tectonic activity has taken place, highly discordant values for the ages are obtained. The difficulties associated are numerous and listed as follows:.

    There seems to be a great deal of question regarding the branching ratio for K40 into Ar40 and Ca But the value is not really known. The observed value is between 0. However, this doesn't remedy the situation and the ages are still too high [low? The geochronologists credit this to "argon leakage". There is far too much Ar40 in the earth for more than a small fraction of it to have been formed by radioactive decay of K This is true even if the earth really is 4.

    In the atmosphere of the earth, Ar40 constitutes This is around times the amount that would be generated by radioactive decay over the age of 4. Certainly this is not produced by an influx from outer space. Thus, a large amount of Ar40 was present in the beginning. Since geochronologists assume that errors due to presence of initial Ar40 are small, their results are highly questionable. Argon diffuses from mineral to mineral with great ease. It leaks out of rocks very readily and can move from down deep in the earth, where the pressure is large, and accumulate in an abnormally large amount in the surface where rock samples for dating are found.

    They would all have excess argon due to this movement. This makes them appear older. Rocks from deeper in the crust would show this to a lesser degree. Also, since some rocks hold the Ar40 stronger than others, some rocks will have a large apparent age, others smaller ages, though they may actually be the same age. If you were to measure Ar40 concentration as function of depth, you would no doubt find more of it near the surface than at deeper points because it migrates more easily from deep in the earth than it does from the earth into the atmosphere.

    It is easy to see how the huge ages are being obtained by the KAr40 radiometric clock, since surface and near-surface samples will contain argon due to this diffusion effect. Some geochronologists believe that a possible cause of excess argon is that argon diffuses into mineral progressively with time. Significant quantities of argon may be introduced into a mineral even at pressures as low as one bar.

    If such [excessive] ages as mentioned above are obtained for pillow lavas, how are those from deep-sea drilling out in the Atlantic where sea-floor spreading is supposed to be occurring? Potassium is found to be very mobile under leaching conditions. This could move the "ages" to tremendously high values. Ground-water and erosional water movements could produce this effect naturally. Rocks in areas having a complex geological history have many large discordances. In a single rock there may be mutually contaminating, potassium- bearing minerals.

    Navigation menu

    There is some difficulty in determining the decay constants for the KAr40 system. Geochronologists use the branching ratio as a semi-emperical, adjustable constant which they manipulate instead of using an accurate half-life for K A number of recent lava flows within the past few hundred years yield potassium-argon ages in the hundreds of thousands of years range.

    This indicates that some excess argon is present. Where is it coming from? And how do we know that it could not be a much larger quantity in other cases? If more excess argon were present, then we could get much older ages. It is true that an age difference in the hundreds of thousands of years is much too small to account for the observed K-Ar ages. But excess argon is commonly invoked by geologists to explain dates that are too old, so I'm not inventing anything new. Second, there may have been a lot more more argon in the magma in the past, and with each eruption, the amount decreased.

    So there would have been a lot more excess argon in the past, leading to older ages. For rocks that are being dated, contamination with atmospheric argon is a persistent problem that is mentioned a number of times. Thus it is clear that argon enters rock easily. It is claimed that we can know if a rock has added argon by its spectrum when heated; different temperatures yield different fractions of argon. It is claimed that the argon that enters from the atmosphere or other rocks, is less tightly bound to the crystal lattice, and will leave the rock at a lower temperature.

    But how do we know what happens over thousands of years? It could be that this argon which is initially loosely bound if it is so initially gradually becomes more tightly bound by random thermal vibrations, until it becomes undetectable by the spectrum technique. The fact that rock is often under high pressure might influence this process, as well.

    The branching ratio problem We now consider in more detail one of the problems with potassium-argon dating, namely, the branching ratio problem. Here is some relevant information that was e-mailed to me. There are some very serious objections to using the potassium-argon decay family as a radiometric clock. The geochronologist considers the Ca40 of little practical use in radiometric dating since common calcium is such an abundant element and the radiogenic Ca40 has the same atomic mass as common calcium.

    Here the actual observed branching ratio is not used, but rather a small ratio is arbitrarily chosen in an effort to match dates obtained method with U-Th-Pb dates. The branching ratio that is often used is 0. Thus we have another source of error for K-Ar dating. Henke criticized some statements in my article taken from Slusher about the branching ratio for potassium.

    Slusher asserted that the best known value of the branching ratio was not always used in computing K-Ar radiometric ages. Unfortunately, Dalrymple says nothing about the calculation of the branching ratio. He simply gives the correct value for the K-Ar system. The issue is not just how well this was known in the past, but which value was actually used, and whether dates published in the past have been computed with the most recent value. Often values for constants are standardized, so that the values actually used may not be the most accurate known.

    All that Dalrymple says is that his ages were all recomputed using the most accurate values of the constants. This implies that some of them were originally computed using less accurate values, which is similar to Slusher's point. He admits that Slusher's statements about it would have been true in the 's and early 's, but are no longer true. But he didn't say when the correct value for the branching ratio began to be used. Even some figures from Faure, Principles of Isotope Geology, are based on another constant that is 2 or 3 percent too low, according to Dalrymple, and so there may be many ages in the literature that need revision by small amounts.

    However, Harland et al imply that nearly the correct value for the branching ratio has been known and used since the mid-fifties. We now consider whether they can explain the observed dates. In general, the dates that are obtained by radiometric methods are in the hundreds of millions of years range. One can understand this by the fact that the clock did not get reset if one accepts the fact that the magma "looks" old, for whatever reason.

    That is, we can get both parent and daughter elements from the magma inherited into minerals that crystallize out of lava, making these minerals look old. Since the magma has old radiometric dates, depending on how much the clock gets reset, the crust can end up with a variety of younger dates just by partially inheriting the dates of the magma. Thus any method based on simple parent to daughter ratios such as Rb-Sr dating is bound to be unreliable, since there would have to be a lot of the daughter product in the magma already.

    And Harold Coffin's book Creation by Design lists a study showing that Rb-Sr dates are often inherited from the magma. Even the initial ratios of parent and daughter elements in the earth do not necessarily indicate an age as old as 4. Radioactive decay would be faster in the bodies of stars, which is where scientists assume the heavy elements formed. Imagine a uranium nucleus forming by the fusion of smaller nucleii. At the moment of formation, as two nucleii collide, the uranium nucleus will be somewhat unstable, and thus very likely to decay into its daughter element.

    The same applies to all nucleii, implying that one could get the appearance of age quickly. Of course, the thermonuclear reactions in the star would also speed up radioactive decay. But isochrons might be able to account for pre-existing daughter elements. Furthermore, some elements in the earth are too abundant to be explained by radioactive decay in 4. Some are too scarce such as helium. So it's not clear to me how one can be sure of the 4.

    Why older dates would be found lower in the geologic column especially for K-Ar dating In general, potassium-argon dates appear to be older the deeper one goes in the crust of the earth. We now consider possible explanations for this. There are at least a couple of mechanisms to account for this. In volcano eruptions, a considerable amount of gas is released with the lava. This gas undoubtedly contains a significant amount of argon Volcanos typically have magma chambers under them, from which the eruptions occur.

    It seems reasonable that gas would collect at the top of these chambers, causing artificially high K-Ar radiometric ages there. In addition, with each successive eruption, some gas would escape, reducing the pressure of the gas and reducing the apparent K-Ar radiometric age. Thus the decreasing K-Ar ages would represent the passage of time, but not necessarily related to their absolute radiometric ages. As a result, lava found in deeper layers, having erupted earlier, would generally appear much older and lava found in higher layers, having erupted later, would appear much younger.

    This could account for the observed distribution of potassium-argon dates, even if the great sedimantary layers were laid down very recently. In addition, lava emerging later will tend to be hotter, coming from deeper in the earth and through channels that have already been warmed up. This lava will take longer to cool down, giving more opportunity for enclosed argon to escape and leading to younger radiometric ages. Another factor is that rocks absorb argon from the air. It is true that this can be accounted for by the fact that argon in the air has Ar36 and Ar40, whereas only Ar40 is produced by K-Ar decay.

    But for rocks deep in the earth, the mixture of argon in their environment is probably much higher in Ar40, since only Ar40 is produced by radioactive decay. As these rocks absorb argon, their radiometric ages would increase. This would probably have a larger effect lower down, where the pressure of argon would be higher.

    Or it could be that such a distribution of argon pressures in the rocks occurred at some time in the past. This would also make deeper rocks tend to have older radiometric ages. Recent lava flows often yield K-Ar ages of about , years. This shows that they contain some excess argon, and not all of it is escaping. If they contained a hundred times more excess argon, their K-Ar ages would be a hundred times greater, I suppose.

    And faster cooling could increase the ages by further large factors. I also read of a case where a rock was K-Ar dated at 50 million years, and still susceptible to absorbing argon from the air. This shows that one might get radiometric ages of at least 50 million years in this way by absorbing Ar40 deep in the earth without much Ar36 or Ar38 present. If the pressure of Ar40 were greater, one could obtain even greater ages.

    Yet another mechanism that can lead to decreasing K-Ar ages with time is the following, in a flood model: One can assume that at the beginning of the flood, many volcanoes erupted and the waters became enriched in Ar Then any lava under water would appear older because its enclosed Ar40 would have more trouble escaping. As time passed, this Ar40 would gradually pass into the atmosphere, reducing this effect and making rocks appear younger. In addition, this would cause a gradient of Ar40 concentrations in the air, with higher concentrations near the ground.

    This also could make flows on the land appear older than they are, since their Ar40 would also have a harder time escaping. Plaisted wants to give his readers the impression that argon can readily move in and out of minerals and, therefore, the gas is too volatile for radiometric dating. Specifically, he quotes one of his anonymous friends that claims that argon easily diffuses from minerals p.

    Of course, these statements are inaccurate generalizations. Geochronologists are aware that excess argon may accumulate on mineral surfaces and the surface argon would be removed before analysis. However, Henke admits that this can happen in some cases. He states that geologists are aware of this problem, and make allowances for it. But it is more difficult to remove argon that has deposited on cracks in the mineral, which can be difficult to see.

    Henke referenced Davis A. Young frequently, but I was not able to find Young referenced in any of the other sources I examined except Dalrymple Henke states that hornblendes retain argon very well, but then later says that they can easily absorb excess argon. Geologists also recognize that heating causes argon to leave minerals, and that dissolved argon in a mineral that does not escape will become incorporated into it, artificially increasing its K-Ar age. I will comment more on this below, but a few comments now are appropriate. For a temperature of K 27 degrees C , there is no significant argon loss from biotite.

    At K degrees C , there is a slow but significant diffusion rate. At K degrees C , loss of argon is quite rapid. To lose one percent in one year requires a temperature of nearly degrees centigrade. Thus the temperature does not have to be very high for argon to move through rock. This also justifies Slusher's statements about argon moving in and out of rocks with ease. However, it does not seem likely that sedimentary rocks would be this hot very often, except near lava or magma flows.

    But argon does not need to move through all rock in order to influence radiometric dates, it only has to reach ancient lava flows. This it can do by following the path of the ancient lava flow itself, coming up along the path of the magma. As the magma or lava cools, this path will consist entirely of hot magma or lava, and so the argon will have a free path, and will continue to enter the magma as it cools. Thus in many cases, the lava or magma will never completely degas, and extra argon will end up trapped in the cooled rock.

    This will result in artificially increased K-Ar ages. Many ancient lava flows are relatively flat, in contrast to modern ones. Also, they appear to have been covered over quickly. The flatness means that the lava is a contiguous mass, and can still be reached from the hot magma by a continuous path of hot rock. The fact that they soon are covered over means that the argon has a hard time escaping vertically from the lava, so argon coming up from the mantle will tend to enter the cooling rock.

    Both facts will tend to produce artificially high K-Ar ages in these flows which will not be seen in modern lava flows in the same manner. Modern lava flows often come down the sides of volcanoes, and thus become separated from their source by large distances. Also, they do not get quickly buried by additional sediment. Thus modern lava flows are not subject to the same mechanism of artificial increases in their K-Ar ages as are ancient ones. Also, it is reasonable to assume that as argon leaves the mantle in successive eruptions, the amount of argon remaining is reduced, so that later lava flows are less susceptible to such artificial increases in age.

    The path of magma also becomes longer for later flows, and the magma probably also is a little cooler, inhibiting argon flow. Thus later lava flows give younger K-Ar ages. Another point to note is that even after it cools, the lava or magma may still have many cracks in it, permitting argon to flow. This argon will tend to deposit on the surface of minerals, but with the passage of time it will tend to diffuse into the interior, even if only a very small distance. This is especially true as the lava is cooling.

    This will make it more difficult to detect this added argon by the spectrum test described below. Also, the diffusion of argon in cracks and channels of a mineral is likely much less temperature-dependent than diffusion through unbroken regions of the mineral, since diffusion through cracks and channels simply involves jumps through the air. By a combination of diffusion through cracks and channels, and short passages through unbroken regions of the mineral, argon may be able to reach a considerable distance into the mineral.

    At low temperatures, this may become the dominant means by which argon diffuses into a mineral, but the effect of this kind of diffusion at low temperatures may not be evident until many years have passed. Thus it may take experiments lasting 50 or years at low temperatures to detect the effects of this kind of diffusion of argon, which however could be significantly increasing the K-Ar ages of minerals over long time periods.

    Dickin Radiogenic Isotope Geology, , p. It has been claimed that this can be accomplished by preheating samples under vacuum or by leaching them briefly with hydroflouric acid, or both However Armstrong has questioned whether atmospheric argon, that has been acquired by minerals over a long interval of time, can be removed by this method.

    Thus there is some means by which argon from outside can become very firmly embedded within a rock, and one would expect that the quantity of this argon would continue to increase over time, giving anomalously old K-Ar ages. Added atmospheric argon can be detected, because the ratio of argon 40 to argon 36 for atmospheric argon is But argon 40 coming up from the mantle and diffusing into a mineral would not be detectable in this way, because it has a higher ratio of argon 40 to argon This shows that rocks can adsorb a large amount of argon relative to the argon needed to give them old K-Ar ages, and also suggests that old K-Ar ages can be produced by external argon from the mantle.

    Over a long period of time, adsorbed argon will tend to diffuse into the rock, and thus it will be possible for even more argon to be deposited on the surface, increasing K-Ar ages even more. Generally, excess 40Ar is observed in minerals that have been exposed to a high partial pressure of argon during regional metamorphism, in pegmatites The argon that may either diffuse into the minerals or may be occluded within them is derived by outgassing of K-bearing minerals in the crust and mantle of the Earth.

    The presence of excess 40Ar increases K-Ar dates and may lead to overestimates of the ages of minerals dated by this method. Let us consider the question of how much different dating methods agree on the geologic column, and how many measurements are anomalous, since these points are often mentioned as evidences of the reliability of radiometric dating. It takes a long time to penetrate the confusion and find out what is the hard evidence in this area.

    In the first place, I am not primarily concerned with dating meteorites, or precambrian rocks. What I am more interested in is the fossil-bearing geologic column of Cambrian and later age. Now, several factors need to be considered when evaluating how often methods give expected ages on the geologic column. Some of these are taken from John Woodmoreappe's article on the subject, but only when I have reason to believe the statements are also generally believed.

    First, many igneous formations span many periods, and so have little constraint on what period they could belong to. The same applies to intrusions. In addition, some kinds of rocks are not considered as suitable for radiometric dating, so these are typically not considered. Furthermore, it is at least possible that anomalies are under-reported in the literature.

    Finally, the overwhelming majority of measurements on the fossil bearing geologic column are all done using one method, the K-Ar method. And let me recall that both potassium and argon are water soluble, and argon is mobile in rock. Thus the agreement found between many dates does not necessarily reflect an agreement between different methods, but rather the agreement of the K-Ar method with itself.

    For example, if 80 percent of the measurements were done using K-Ar dating, and the other 20 percent gave random results, we still might be able to say that most of the measurements on a given strata agree with one another reasonably well. So to me it seems quite conceivable that there is no correlation at all between the results of different methods on the geologic column, and that they have a purely random relationship to each other.

    Let us consider again the claim that radiometric dates for a given geologic period agree with each other. I would like to know what is the exact or approximate information content of this assertion, and whether it could be or has been tested statistically. It's not as easy as it might sound. Thus dating that particular tree does not necessarily indicate when the fire burned or the structure was built. For this reason, many archaeologists prefer to use samples from short-lived plants for radiocarbon dating. The development of accelerator mass spectrometry AMS dating, which allows a date to be obtained from a very small sample, has been very useful in this regard.

    Other radiometric dating techniques are available for earlier periods. One of the most widely used is potassium—argon dating K—Ar dating. Potassium is a radioactive isotope of potassium that decays into argon The half-life of potassium is 1. Potassium is common in rocks and minerals, allowing many samples of geochronological or archeological interest to be dated.

    Argon , a noble gas, is not commonly incorporated into such samples except when produced in situ through radioactive decay. The date measured reveals the last time that the object was heated past the closure temperature at which the trapped argon can escape the lattice. K—Ar dating was used to calibrate the geomagnetic polarity time scale. Thermoluminescence testing also dates items to the last time they were heated. This technique is based on the principle that all objects absorb radiation from the environment. This process frees electrons within minerals that remain caught within the item.

    Heating an item to degrees Celsius or higher releases the trapped electrons , producing light. This light can be measured to determine the last time the item was heated. Radiation levels do not remain constant over time. Fluctuating levels can skew results — for example, if an item went through several high radiation eras, thermoluminescence will return an older date for the item.

    Many factors can spoil the sample before testing as well, exposing the sample to heat or direct light may cause some of the electrons to dissipate, causing the item to date younger. It cannot be used to accurately date a site on its own. However, it can be used to confirm the antiquity of an item. Optically stimulated luminescence OSL dating constrains the time at which sediment was last exposed to light. During sediment transport, exposure to sunlight 'zeros' the luminescence signal. Upon burial, the sediment accumulates a luminescence signal as natural ambient radiation gradually ionises the mineral grains.

    Careful sampling under dark conditions allows the sediment to be exposed to artificial light in the laboratory which releases the OSL signal. The amount of luminescence released is used to calculate the equivalent dose De that the sediment has acquired since deposition, which can be used in combination with the dose rate Dr to calculate the age. Dendrochronology or tree-ring dating is the scientific method of dating based on the analysis of patterns of tree rings , also known as growth rings.

    Dendrochronology can date the time at which tree rings were formed, in many types of wood, to the exact calendar year. Dendrochronology has three main areas of application: